Differential equations: Difference between revisions
From JSXGraph Wiki
| A WASSERMANN (talk | contribs) No edit summary | A WASSERMANN (talk | contribs) No edit summary | ||
| (6 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| Display solutions of the ordinary differential equation | Display solutions of the ordinary differential equation | ||
| :<math> y'= f( | :<math> y'= f(t,y)</math> | ||
| with initial value <math>(x_0,y_0)</math>. | with initial value <math>(x_0,y_0)</math>. | ||
| It is easy to incorporate sliders: give the slider a (unique) name and use this name in the equation. In the example below, the slider name is <math>c</math>. | |||
| <html> | <html> | ||
| <form> | <form> | ||
| f(x,y)=<input type="text" id="odeinput" value="(2-x)*y"><input type=button value="ok" onclick="doIt()"> | f(x,y)=<input type="text" id="odeinput" value="(2-x)*y + c"><input type=button value="ok" onclick="doIt()"> | ||
| </form> | </form> | ||
| </html> | </html> | ||
| Line 10: | Line 12: | ||
| var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | ||
| var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'}); | var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'}); | ||
| var slider = brd.create('slider',[[-7,8],[7,8],[-15,0,15]], {name:'c'}); | |||
| var P = brd.create('point',[0,1], {name:'(x_0, y_0)'}); | var P = brd.create('point',[0,1], {name:'(x_0, y_0)'}); | ||
| var f; | var f; | ||
| Line 16: | Line 19: | ||
|    var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 'x, y'); |    var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 'x, y'); | ||
|    f = function (x, yy) { |    f = function (x, yy) { | ||
|        return [snip(yy[0 |        return [snip(x, yy[0])]; | ||
|    } |    } | ||
|    brd.update(); |    brd.update(); | ||
| Line 52: | Line 55: | ||
| <source lang="xml"> | <source lang="xml"> | ||
| <form> | <form> | ||
| f(x,y)=<input type="text" id="odeinput" value="(2-x)*y"><input type=button value="ok" onclick="doIt()"> | f(x,y)=<input type="text" id="odeinput" value="(2-x)*y + c"><input type=button value="ok" onclick="doIt()"> | ||
| </form> | </form> | ||
| </source> | </source> | ||
| Line 58: | Line 61: | ||
| var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | ||
| var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'}); | var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'}); | ||
| var P = brd.create('point',[0,1], {name:'(x_0,y_0)'}); | var slider = brd.create('slider',[[-7,8],[7,8],[-15,0,15]], {name:'c'}); | ||
| var P = brd.create('point',[0,1], {name:'(x_0, y_0)'}); | |||
| var f; | |||
| function doIt() { | function doIt() { | ||
|    var  |    var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 'x, y'); | ||
|    f =  |    f = function (x, yy) { | ||
|       return [snip(x, yy[0])]; | |||
|   } | |||
|    brd.update(); |    brd.update(); | ||
| } | } | ||
| Line 74: | Line 81: | ||
|      var data = ode(); |      var data = ode(); | ||
|      var h = N.Value()/200; |      var h = N.Value()/200; | ||
|     var i; | |||
|      this.dataX = []; |      this.dataX = []; | ||
|      this.dataY = []; |      this.dataY = []; | ||
|      for( |      for(i=0; i<data.length; i++) { | ||
|          this.dataX[i] = P.X()+i*h; |          this.dataX[i] = P.X()+i*h; | ||
|          this.dataY[i] = data[i][0]; |          this.dataY[i] = data[i][0]; | ||
Revision as of 11:39, 19 January 2017
Display solutions of the ordinary differential equation
- [math]\displaystyle{ y'= f(t,y) }[/math]
with initial value [math]\displaystyle{ (x_0,y_0) }[/math].
It is easy to incorporate sliders: give the slider a (unique) name and use this name in the equation. In the example below, the slider name is [math]\displaystyle{ c }[/math].
See also
- Systems of differential equations
- Lotka-Volterra equations
- Epidemiology: The SIR model
- Population growth models
- Autocatalytic process
- Logistic process
- Paul Pearson has written a very nice variation: Slope fields and solution curves (using the Runge-Kutta)
The underlying JavaScript code
<form>
f(x,y)=<input type="text" id="odeinput" value="(2-x)*y + c"><input type=button value="ok" onclick="doIt()">
</form>
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]});
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'});
var slider = brd.create('slider',[[-7,8],[7,8],[-15,0,15]], {name:'c'});
var P = brd.create('point',[0,1], {name:'(x_0, y_0)'});
var f;
function doIt() {
  var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 'x, y');
  f = function (x, yy) {
      return [snip(x, yy[0])];
  }
  brd.update();
}
function ode() {
   return JXG.Math.Numerics.rungeKutta('heun', [P.Y()], [P.X(), P.X()+N.Value()], 200, f);
}
var g = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2});
g.updateDataArray = function() {
    var data = ode();
    var h = N.Value()/200;
    var i;
    this.dataX = [];
    this.dataY = [];
    for(i=0; i<data.length; i++) {
        this.dataX[i] = P.X()+i*h;
        this.dataY[i] = data[i][0];
    }
};
doIt();
