Differential equations: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary  | 
				A WASSERMANN (talk | contribs) No edit summary  | 
				||
| (47 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
Display solutions of the ordinary differential equation  | |||
:<math> y'= f(t,y)</math>  | |||
with initial value <math>(x_0,y_0)</math>.  | |||
It is easy to incorporate sliders: give the slider a (unique) name and use this name in the equation. In the example below, the slider name is <math>c</math>.  | |||
<html>  | |||
<form>  | |||
f(x,y)=<input type="text" id="odeinput" value="(2-x)*y + c"><input type=button value="ok" onclick="doIt()">  | |||
</form>  | |||
</html>  | |||
<jsxgraph width="500" height="500">  | <jsxgraph width="500" height="500">  | ||
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-5,5,  | var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]});  | ||
var P = brd.create('point',[0,  | var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'});  | ||
var f = function(  | var slider = brd.create('slider',[[-7,8],[7,8],[-15,0,15]], {name:'c'});  | ||
var P = brd.create('point',[0,1], {name:'(x_0, y_0)'});  | |||
var f;  | |||
function doIt() {  | |||
  var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 'x, y');  | |||
  f = function (x, yy) {  | |||
      return [snip(x, yy[0])];  | |||
  }  | |||
  brd.update();  | |||
}  | |||
function ode() {  | function ode() {  | ||
    return JXG.Math.Numerics.rungeKutta('heun', [P.Y()], [P.X(), P.X()+N.Value()], 200, f);  | |||
}  | |||
var g = brd.  | var g = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2});  | ||
g.updateDataArray = function() {  | g.updateDataArray = function() {  | ||
     var data = ode();  |      var data = ode();  | ||
    var h = N.Value()/200;  | |||
    var i;  | |||
     this.dataX = [];  |      this.dataX = [];  | ||
     this.dataY = [];  |      this.dataY = [];  | ||
     for(  |      for(i=0; i<data.length; i++) {  | ||
         this.dataX[i] =   |          this.dataX[i] = P.X()+i*h;  | ||
         this.dataY[i] = data[i][0];  |          this.dataY[i] = data[i][0];  | ||
     }  |      }  | ||
};  | };  | ||
doIt();  | |||
</jsxgraph>  | </jsxgraph>  | ||
===See also===  | |||
* [[Systems of differential equations]]  | |||
* [[Lotka-Volterra equations]]  | |||
* [[Epidemiology: The SIR model]]  | |||
* [[Population growth models]]  | |||
* [[Autocatalytic process]]  | |||
* [[Logistic process]]  | |||
* Paul Pearson has written a very nice variation: [http://faculty.fortlewis.edu/Pearson_P/jsxgraph/slopefield.html Slope fields and solution curves (using the Runge-Kutta)]  | |||
===The underlying JavaScript code===  | ===The underlying JavaScript code===  | ||
<source lang="xml">  | |||
<form>  | |||
f(x,y)=<input type="text" id="odeinput" value="(2-x)*y + c"><input type=button value="ok" onclick="doIt()">  | |||
</form>  | |||
</source>  | |||
<source lang="javascript">  | <source lang="javascript">  | ||
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]});  | |||
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'});  | |||
var slider = brd.create('slider',[[-7,8],[7,8],[-15,0,15]], {name:'c'});  | |||
var P = brd.create('point',[0,1], {name:'(x_0, y_0)'});  | |||
var f;  | |||
function doIt() {  | |||
  var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 'x, y');  | |||
  f = function (x, yy) {  | |||
      return [snip(x, yy[0])];  | |||
  }  | |||
  brd.update();  | |||
}  | |||
function ode() {  | |||
   return JXG.Math.Numerics.rungeKutta('heun', [P.Y()], [P.X(), P.X()+N.Value()], 200, f);  | |||
}  | |||
var g = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2});  | |||
g.updateDataArray = function() {  | |||
    var data = ode();  | |||
    var h = N.Value()/200;  | |||
    var i;  | |||
    this.dataX = [];  | |||
    this.dataY = [];  | |||
    for(i=0; i<data.length; i++) {  | |||
        this.dataX[i] = P.X()+i*h;  | |||
        this.dataY[i] = data[i][0];  | |||
    }  | |||
};  | |||
doIt();  | |||
</source>  | </source>  | ||
[[Category:Examples]]  | [[Category:Examples]]  | ||
[[Category:Calculus]]  | [[Category:Calculus]]  | ||
Revision as of 11:39, 19 January 2017
Display solutions of the ordinary differential equation
- [math]\displaystyle{ y'= f(t,y) }[/math]
 
with initial value [math]\displaystyle{ (x_0,y_0) }[/math].
It is easy to incorporate sliders: give the slider a (unique) name and use this name in the equation. In the example below, the slider name is [math]\displaystyle{ c }[/math].
See also
- Systems of differential equations
 - Lotka-Volterra equations
 - Epidemiology: The SIR model
 - Population growth models
 - Autocatalytic process
 - Logistic process
 - Paul Pearson has written a very nice variation: Slope fields and solution curves (using the Runge-Kutta)
 
The underlying JavaScript code
<form>
f(x,y)=<input type="text" id="odeinput" value="(2-x)*y + c"><input type=button value="ok" onclick="doIt()">
</form>
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]});
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'});
var slider = brd.create('slider',[[-7,8],[7,8],[-15,0,15]], {name:'c'});
var P = brd.create('point',[0,1], {name:'(x_0, y_0)'});
var f;
function doIt() {
  var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 'x, y');
  f = function (x, yy) {
      return [snip(x, yy[0])];
  }
  brd.update();
}
function ode() {
   return JXG.Math.Numerics.rungeKutta('heun', [P.Y()], [P.X(), P.X()+N.Value()], 200, f);
}
var g = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2});
g.updateDataArray = function() {
    var data = ode();
    var h = N.Value()/200;
    var i;
    this.dataX = [];
    this.dataY = [];
    for(i=0; i<data.length; i++) {
        this.dataX[i] = P.X()+i*h;
        this.dataY[i] = data[i][0];
    }
};
doIt();