Takagi–Landsberg curve: Difference between revisions
A WASSERMANN (talk | contribs) No edit summary |
No edit summary |
||
(10 intermediate revisions by one other user not shown) | |||
Line 9: | Line 9: | ||
:<math> T_w(x) = \sum_{n=0}^\infty w^n s(2^{n}x)</math> | :<math> T_w(x) = \sum_{n=0}^\infty w^n s(2^{n}x)</math> | ||
for a parameter w; thus the blancmange curve is the case <math>w = 1 / 2</math> | for a parameter w; thus the blancmange curve is the case <math>w = 1 / 2</math>. For <math>w = 1 / 4</math>, one obtains the parabola: the construction of the parabola by midpoint subdivision was described by Archimedes. | ||
<jsxgraph width="500" height="500" box="box"> | <jsxgraph width="500" height="500" box="box"> | ||
var bd = JXG.JSXGraph.initBoard('box', {axis:true, | var bd = JXG.JSXGraph.initBoard('box', {axis:true,boundingbox: [-0.05, 16, 1.27, -4]}); | ||
var | var w = bd.create('slider', [[0,8],[0.8,8],[0,0.25,1.5]], {name:'w'}); | ||
var | var N = bd.create('slider', [[0,7],[0.8,7],[0,5,40]], {name:'N'}); | ||
var | var s = function(x){ return Math.abs(x-Math.round(x)); }; | ||
var c = bd. | var c = bd.create('functiongraph', [ | ||
function(x){ | |||
var n, su, wval; | |||
su = 0.0; | |||
wval = w.Value(); | |||
for (n=0;n<N.Value();n++) { | |||
su += Math.pow(wval,n)*s(Math.pow(2,n)*x); | |||
} | |||
return su; | |||
},0,1],{strokeColor:'red'}); | |||
</jsxgraph> | </jsxgraph> | ||
===The JavaScript code to produce this picture=== | |||
<source lang="javascript"> | |||
var bd = JXG.JSXGraph.initBoard('box', {axis:true,boundingbox: [-0.05, 16, 1.27, -4]}); | |||
var w = bd.create('slider', [[0,8],[0.8,8],[0,0.25,1.5]], {name:'w'}); | |||
var N = bd.create('slider', [[0,7],[0.8,7],[0,5,40]], {name:'N'}); | |||
var s = function(x){ return Math.abs(x-Math.round(x)); }; | |||
var c = bd.create('functiongraph', [ | |||
function(x){ | |||
var n, su, wval; | |||
su = 0.0; | |||
wval = w.Value(); | |||
for (n=0;n<N.Value();n++) { | |||
su += Math.pow(wval,n)*s(Math.pow(2,n)*x); | |||
} | |||
return su; | |||
},0,1],{strokeColor:'red'}); | |||
</source> | |||
===References=== | |||
* Teiji Takagi, "A Simple Example of a Continuous Function without Derivative", Proc. Phys. Math. Japan, (1903) Vol. 1, pp. 176-177. | |||
===External links=== | |||
* [http://en.wikipedia.org/wiki/Blancmange_curve http://en.wikipedia.org/wiki/Blancmange_curve] | |||
[[Category:Examples]] | |||
[[Category:Curves]] |
Latest revision as of 07:26, 9 June 2011
The blancmange function is defined on the unit interval by
- [math]\displaystyle{ {\rm blanc}(x) = \sum_{n=0}^\infty {s(2^{n}x)\over 2^n}, }[/math]
where [math]\displaystyle{ s(x) }[/math] is defined by [math]\displaystyle{ s(x)=\min_{n\in{\bold Z}}|x-n| }[/math], that is, [math]\displaystyle{ s(x) }[/math] is the distance from x to the nearest integer. The infinite sum defining [math]\displaystyle{ blanc(x) }[/math] converges absolutely for all x, but the resulting curve is a fractal. The blancmange function is continuous but nowhere differentiable.
The Takagi–Landsberg curve is a slight generalization, given by
- [math]\displaystyle{ T_w(x) = \sum_{n=0}^\infty w^n s(2^{n}x) }[/math]
for a parameter w; thus the blancmange curve is the case [math]\displaystyle{ w = 1 / 2 }[/math]. For [math]\displaystyle{ w = 1 / 4 }[/math], one obtains the parabola: the construction of the parabola by midpoint subdivision was described by Archimedes.
The JavaScript code to produce this picture
var bd = JXG.JSXGraph.initBoard('box', {axis:true,boundingbox: [-0.05, 16, 1.27, -4]});
var w = bd.create('slider', [[0,8],[0.8,8],[0,0.25,1.5]], {name:'w'});
var N = bd.create('slider', [[0,7],[0.8,7],[0,5,40]], {name:'N'});
var s = function(x){ return Math.abs(x-Math.round(x)); };
var c = bd.create('functiongraph', [
function(x){
var n, su, wval;
su = 0.0;
wval = w.Value();
for (n=0;n<N.Value();n++) {
su += Math.pow(wval,n)*s(Math.pow(2,n)*x);
}
return su;
},0,1],{strokeColor:'red'});
References
- Teiji Takagi, "A Simple Example of a Continuous Function without Derivative", Proc. Phys. Math. Japan, (1903) Vol. 1, pp. 176-177.