Power Series for sine and cosine: Difference between revisions
From JSXGraph Wiki
| A WASSERMANN (talk | contribs) No edit summary | No edit summary | ||
| Line 2: | Line 2: | ||
| :<math>\sum_{k=0}^n (-1)^k\frac{1}{(2k+1)!}x^{2k+1}</math> | :<math>\sum_{k=0}^n (-1)^k\frac{1}{(2k+1)!}x^{2k+1}</math> | ||
| < | <jsxgraph box="jxgbox1" width="700" height="300"> | ||
| board1 = JXG.JSXGraph.initBoard('jxgbox1', {axis:true, boundingbox: [-6, 3, 8, -3]}); | |||
| board1 = JXG.JSXGraph.initBoard('jxgbox1', {axis:true,  | |||
| board1.suspendUpdate(); | board1.suspendUpdate(); | ||
| board1.createElement('functiongraph', [function(t){ return Math.sin(t); },-10, 10],{strokeColor: "#cccccc"}); | board1.createElement('functiongraph', [function(t){ return Math.sin(t); },-10, 10],{strokeColor: "#cccccc"}); | ||
| Line 22: | Line 17: | ||
| -10, 10], {strokeColor: "#bb0000"}); | -10, 10], {strokeColor: "#bb0000"}); | ||
| board1.unsuspendUpdate(); | board1.unsuspendUpdate(); | ||
| </jsxgraph>   | |||
| < | |||
| <source lang="javascript"> | <source lang="javascript"> | ||
| board1 = JXG.JSXGraph.initBoard('jxgbox1', {axis:true,  | board1 = JXG.JSXGraph.initBoard('jxgbox1', {axis:true, boundingbox: [-6, 3, 8, -3]}); | ||
| board1.suspendUpdate(); | board1.suspendUpdate(); | ||
| board1.createElement('functiongraph', [function(t){ return Math.sin(t); },-10, 10],{strokeColor: "#cccccc"}); | board1.createElement('functiongraph', [function(t){ return Math.sin(t); },-10, 10],{strokeColor: "#cccccc"}); | ||
| Line 50: | Line 37: | ||
| == Power Series for Cosine == | == Power Series for Cosine == | ||
| < | <jsxgraph box="jxgbox1" width="700" height="300"> | ||
| board2 = JXG.JSXGraph.initBoard('jxgbox2', {axis:true, boundingbox: [-6, 3, 8, -3]}); | |||
| board2 = JXG.JSXGraph.initBoard('jxgbox2', {axis:true,  | |||
| board2.suspendUpdate(); | board2.suspendUpdate(); | ||
| board2.createElement('functiongraph', [function(t){ return Math.cos(t); }, -10, 10],{strokeColor: "#cccccc"}); | board2.createElement('functiongraph', [function(t){ return Math.cos(t); }, -10, 10],{strokeColor: "#cccccc"}); | ||
| Line 68: | Line 52: | ||
| -10, 10],{strokeColor: "#009900"});						 | -10, 10],{strokeColor: "#009900"});						 | ||
| board2.unsuspendUpdate(); | board2.unsuspendUpdate(); | ||
| </ | </jsxgraph> | ||
| <source lang="javascript"> | <source lang="javascript"> | ||
| board2 = JXG.JSXGraph.initBoard('jxgbox2', {axis:true,  | board2 = JXG.JSXGraph.initBoard('jxgbox2', {axis:true, boundingbox: [-6, 3, 8, -3]}); | ||
| board2.suspendUpdate(); | board2.suspendUpdate(); | ||
| board2.createElement('functiongraph', [function(t){ return Math.cos(t); }, -10, 10],{strokeColor: "#cccccc"}); | board2.createElement('functiongraph', [function(t){ return Math.cos(t); }, -10, 10],{strokeColor: "#cccccc"}); | ||
Revision as of 11:52, 8 June 2011
Power Series for Sine
- [math]\displaystyle{ \sum_{k=0}^n (-1)^k\frac{1}{(2k+1)!}x^{2k+1} }[/math]
board1 = JXG.JSXGraph.initBoard('jxgbox1', {axis:true, boundingbox: [-6, 3, 8, -3]});
board1.suspendUpdate();
board1.createElement('functiongraph', [function(t){ return Math.sin(t); },-10, 10],{strokeColor: "#cccccc"});
var s = board1.createElement('slider', [[0.75,-1.5],[5.75,-1.5],[0,0,10]], {name:'S',snapWidth:1});
board1.createElement('functiongraph', [
  function(t) {
    var val = 0, i, sv = s.Value()+1;
    for(i = 0; i < sv; i++) {
      val = val + Math.pow(-1, i) * Math.pow(t, 2 * i + 1) / board1.factorial(2*i+1);
    }
    return val;
  }, -10, 10], {strokeColor: "#bb0000"});
board1.unsuspendUpdate();
Power Series for Cosine
board2 = JXG.JSXGraph.initBoard('jxgbox2', {axis:true, boundingbox: [-6, 3, 8, -3]});
board2.suspendUpdate();
board2.createElement('functiongraph', [function(t){ return Math.cos(t); }, -10, 10],{strokeColor: "#cccccc"});
var s2 = board2.createElement('slider', [[0.75,-1.5],[5.75,-1.5],[0,0,10]], {name:'T',snapWidth:1});
board2.createElement('functiongraph', [
  function(t) {
    var val = 0, i, sv = Math.floor(s2.Value())+1;
    for(i = 0; i < sv; i++) {
      val = val + Math.pow(-1, i) * Math.pow(t, 2 * i) / board2.factorial(2*i);
    }
    return val;
  }, -10, 10],{strokeColor: "#009900"});						
board2.unsuspendUpdate();
