Semicubical parabola: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) (New page: A semicubical parabola is a curve defined parametrically as :<math> x = t^2 </math> :<math> y = at^3 </math> <jsxgraph width="600" height="600"> (function(){ var brd = JXG.JSXGraph.init...) |
A WASSERMANN (talk | contribs) No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
<jsxgraph width="600" height="600"> | <jsxgraph width="600" height="600"> | ||
(function(){ | (function(){ | ||
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-1,2,3,-2], keepaspectratio:true}); | var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-1,2,3,-2], keepaspectratio:true, axis:true}); | ||
brd.suspendUpdate(); | brd.suspendUpdate(); | ||
var a = brd.create('slider',[[- | var a = brd.create('slider',[[-0.5,1.8],[1,1.8],[-5,0.20,5]], {name:'a'}); | ||
var p = brd.create('curve', | var p = brd.create('curve', | ||
[function(t){ return t*t;}, | [function(t){ return t*t;}, | ||
function(t){ return a.Value()*t*t*t;} | function(t){ return a.Value()*t*t*t;}, | ||
-2, 2 | |||
], | ], | ||
{strokeWidth: | {strokeWidth:1, strokeColor:'black'}); | ||
brd.unsuspendUpdate(); | brd.unsuspendUpdate(); | ||
})(); | })(); | ||
</jsxgraph> | </jsxgraph> | ||
* '''From Wikipedia:''' | |||
The semicubical parabola was discovered in 1657 by William Neile who computed its arc length; it was the first algebraic curve (excluding the line) to be rectified. It is unique in that a particle following its path while being pulled down by gravity travels equal vertical intervals in equal time periods. | |||
* '''From MathDL:''' | |||
1659: Hendrik van Heuraet sent van Schooten his rectification of the semi-cubical parabola. This was published---his only publication---in the second Latin edition of Descartes' Geometrie. This broke the spell of Aristotle's dictum that curved lines could not in principle be compared with straight lines. | |||
===References=== | ===References=== | ||
* [http://en.wikipedia.org/wiki/Semicubical_parabola Wikipedia on semicubical parabola] | * [http://en.wikipedia.org/wiki/Semicubical_parabola Wikipedia on semicubical parabola] | ||
* [http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Heuraet.html The MacTutor History of Mathematics archive] | |||
* [http://mathdl.maa.org/mathDL/?pa=historicalEvent&sa=browseFrontEnd&month=0&day=13 MathDL, the MAA Mathematical Sciences Digital Library] | * [http://mathdl.maa.org/mathDL/?pa=historicalEvent&sa=browseFrontEnd&month=0&day=13 MathDL, the MAA Mathematical Sciences Digital Library] | ||
===The underlying JavaScript code=== | ===The underlying JavaScript code=== | ||
<source lang="javascript"> | <source lang="javascript"> | ||
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-1,2,3,-2], keepaspectratio:true}); | var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-1,2,3,-2], keepaspectratio:true, axis:true}); | ||
brd.suspendUpdate(); | brd.suspendUpdate(); | ||
var a = brd.create('slider',[[- | var a = brd.create('slider',[[-0.5,1.8],[1,1.8],[-5,0.20,5]], {name:'a'}); | ||
var p = brd.create('curve', | var p = brd.create('curve', | ||
[function(t){ return t*t;}, | [function(t){ return t*t;}, | ||
function(t){ return a.Value()*t*t*t;} | function(t){ return a.Value()*t*t*t;}, | ||
-2, 2 | |||
], | ], | ||
{strokeWidth: | {strokeWidth:1, strokeColor:'black'}); | ||
brd.unsuspendUpdate(); | brd.unsuspendUpdate(); | ||
</source> | </source> |
Latest revision as of 09:39, 13 January 2011
A semicubical parabola is a curve defined parametrically as
- [math]\displaystyle{ x = t^2 }[/math]
- [math]\displaystyle{ y = at^3 }[/math]
- From Wikipedia:
The semicubical parabola was discovered in 1657 by William Neile who computed its arc length; it was the first algebraic curve (excluding the line) to be rectified. It is unique in that a particle following its path while being pulled down by gravity travels equal vertical intervals in equal time periods.
- From MathDL:
1659: Hendrik van Heuraet sent van Schooten his rectification of the semi-cubical parabola. This was published---his only publication---in the second Latin edition of Descartes' Geometrie. This broke the spell of Aristotle's dictum that curved lines could not in principle be compared with straight lines.
References
- Wikipedia on semicubical parabola
- The MacTutor History of Mathematics archive
- MathDL, the MAA Mathematical Sciences Digital Library
The underlying JavaScript code
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-1,2,3,-2], keepaspectratio:true, axis:true});
brd.suspendUpdate();
var a = brd.create('slider',[[-0.5,1.8],[1,1.8],[-5,0.20,5]], {name:'a'});
var p = brd.create('curve',
[function(t){ return t*t;},
function(t){ return a.Value()*t*t*t;},
-2, 2
],
{strokeWidth:1, strokeColor:'black'});
brd.unsuspendUpdate();