Random walks

From JSXGraph Wiki
Jump to: navigation, search

Number of random walks:

Fixed values in this simulation are:

  • stepsize [math]{}=5[/math] and
  • Number of steps per walk [math] {}= 100[/math].

Therefore, the expected squared distance from the starting point will be equal to

  • [math]100\cdot 5^2=2500[/math].

Average square of the distance between starting point and endpoint of the walks:

Source code

var brd = JXG.JSXGraph.initBoard('jxgbox', {boundingbox: [-100, 100, 100, -100]});
var t = brd.create('turtle');

function run() {
  var i,j,dist,sumdist=0.0;
  var stepSize = 5; 
  brd.suspendUpdate();
  var nr = document.getElementById('number').value*1;
  for (i=0;i<nr;i++) {
     t.setPenColor(JXG.hsv2rgb(Math.round(Math.random()*255),Math.random(),Math.random()));
     for (j=0;j<100;j++) {
        var a = Math.floor(360*Math.random()); 
        t.right(a); 
        t.forward(stepSize);
     }
     dist = t.pos[0]*t.pos[0]+t.pos[1]*t.pos[1];
     sumdist += dist;
     t.home();
  }
  document.getElementById('output').value = (sumdist/nr).toFixed(3);
  brd.unsuspendUpdate();
}
function clearturtle() {
  t.cs();
}

External links