<iframe src="http://jsxgraph.uni-bayreuth.de/share/iframe/autocatalytic-process" style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" name="JSXGraph example: Autocatalytic process" allowfullscreen ></iframe>
<button onClick="clearturtle(); run()">Clear and run simulation</button> <div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; "> <div id="board-0" class="jxgbox" style="aspect-ratio: 6 / 5; width: 100%;" data-ar="6 / 5"></div> </div> <script type = "text/javascript"> /* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'board-0'; const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-0.5, 12.5, 14.5, -12.5], keepaspectratio: false, axis: true }); var t = board.create('turtle', [4, 3, 70]); var s = board.create('slider', [ [0, -5], [10, -5], [-5, 0.5, 5] ], { name: 's' }); var alpha = board.create('slider', [ [0, -6], [10, -6], [-1, 0.2, 2] ], { name: 'α' }); t.hideTurtle(); var A = 5; var tau = 0.3; var dx = 0.1; var x; function clearturtle() { t.cs(); t.ht(); } function run() { t.setPos(0, s.Value()); t.setPenSize(4); x = 0.0; // global loop(); } function loop() { var dy = alpha.Value() * t.Y() * (A - t.Y()) * dx; // Autocatalytic process t.moveTo([dx + t.X(), dy + t.Y()]); x += dx; if (x < 20.0) { setTimeout(loop, 10); } } </script>
/* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'your_div_id'; // Insert your id here! const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-0.5, 12.5, 14.5, -12.5], keepaspectratio: false, axis: true }); var t = board.create('turtle', [4, 3, 70]); var s = board.create('slider', [ [0, -5], [10, -5], [-5, 0.5, 5] ], { name: 's' }); var alpha = board.create('slider', [ [0, -6], [10, -6], [-1, 0.2, 2] ], { name: 'α' }); t.hideTurtle(); var A = 5; var tau = 0.3; var dx = 0.1; var x; function clearturtle() { t.cs(); t.ht(); } function run() { t.setPos(0, s.Value()); t.setPenSize(4); x = 0.0; // global loop(); } function loop() { var dy = alpha.Value() * t.Y() * (A - t.Y()) * dx; // Autocatalytic process t.moveTo([dx + t.X(), dy + t.Y()]); x += dx; if (x < 20.0) { setTimeout(loop, 10); } }
This application simulates an autocatalytic population growth model. In JSXGraph, simulations involving differential equations can be easily realized with the turtle element.
The model
In time Δt the population grows by α⋅y⋅(A−y) members:
With the limit process Δt→0 we get
The essential part of the code is: we have a step width dx
(time) and in each step the turtle t
moves from its current position [t.X(), t.Y()]
to the new position[dx + t.X(), dy + t.Y()]
and dy
is determined from the differential equation:
var dy = alpha.Value() * t.Y() * (A - t.Y()) * dx; t.moveTo([dx + t.X(), dy + t.Y()]);
<button onClick="clearturtle(); run()">Clear and run simulation</button>
// Define the id of your board in BOARDID const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-0.5, 12.5, 14.5, -12.5], keepaspectratio: false, axis: true }); var t = board.create('turtle', [4, 3, 70]); var s = board.create('slider', [ [0, -5], [10, -5], [-5, 0.5, 5] ], { name: 's' }); var alpha = board.create('slider', [ [0, -6], [10, -6], [-1, 0.2, 2] ], { name: 'α' }); t.hideTurtle(); var A = 5; var tau = 0.3; var dx = 0.1; var x; function clearturtle() { t.cs(); t.ht(); } function run() { t.setPos(0, s.Value()); t.setPenSize(4); x = 0.0; // global loop(); } function loop() { var dy = alpha.Value() * t.Y() * (A - t.Y()) * dx; // Autocatalytic process t.moveTo([dx + t.X(), dy + t.Y()]); x += dx; if (x < 20.0) { setTimeout(loop, 10); } }
This example is licensed under a
Creative Commons Attribution 4.0 International License.
Please note you have to mention
The Center of Mobile Learning with Digital Technology
in the credits.