<iframe src="http://jsxgraph.uni-bayreuth.de/share/iframe/superformula" style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" name="JSXGraph example: Superformula" allowfullscreen ></iframe>
<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; "> <div id="board-0" class="jxgbox" style="aspect-ratio: 1 / 1; width: 100%;" data-ar="1 / 1"></div> </div> <script type = "text/javascript"> /* This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-sa/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'board-0'; var board = JXG.JSXGraph.initBoard(BOARDID, { axis: true, boundingbox: [-10, 10, 12, -10], keepaspectratio: true }); board.suspendUpdate(); var a = board.create('slider', [[-7, 8], [7, 8], [0, 1, 4]], { name: 'a' }); var b = board.create('slider', [[-7, 7], [7, 7], [0, 1, 4]], { name: 'b' }); var m = board.create('slider', [[-7, 6], [7, 6], [0, 4, 40]], { name: 'm' }); var n1 = board.create('slider', [[-7, 5], [7, 5], [0, 4, 20]], { name: 'n_1' }); var n2 = board.create('slider', [[-7, 4], [7, 4], [0, 4, 20]], { name: 'n_2' }); var n3 = board.create('slider', [[-7, 3], [7, 3], [0, 4, 20]], { name: 'n_3' }); var len = board.create('slider', [[1, 2], [7, 2], [0, 2, 20]], { name: 'len' }); var c = board.create('curve', [ function(phi) { return JXG.Math.pow( JXG.Math.pow(Math.abs(Math.cos(m.Value() * phi * 0.25 / a.Value())), n2.Value()) + JXG.Math.pow(Math.abs(Math.sin(m.Value() * phi * 0.25 / b.Value())), n3.Value()), -1 / n1.Value()); }, [0, 0], 0, function() { return len.Value() * Math.PI; }], { curveType: 'polar', strokewidth: 1, fillColor: '#765412', fillOpacity: 0.3 }); board.unsuspendUpdate(); </script>
/* This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-sa/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'your_div_id'; // Insert your id here! var board = JXG.JSXGraph.initBoard(BOARDID, { axis: true, boundingbox: [-10, 10, 12, -10], keepaspectratio: true }); board.suspendUpdate(); var a = board.create('slider', [[-7, 8], [7, 8], [0, 1, 4]], { name: 'a' }); var b = board.create('slider', [[-7, 7], [7, 7], [0, 1, 4]], { name: 'b' }); var m = board.create('slider', [[-7, 6], [7, 6], [0, 4, 40]], { name: 'm' }); var n1 = board.create('slider', [[-7, 5], [7, 5], [0, 4, 20]], { name: 'n_1' }); var n2 = board.create('slider', [[-7, 4], [7, 4], [0, 4, 20]], { name: 'n_2' }); var n3 = board.create('slider', [[-7, 3], [7, 3], [0, 4, 20]], { name: 'n_3' }); var len = board.create('slider', [[1, 2], [7, 2], [0, 2, 20]], { name: 'len' }); var c = board.create('curve', [ function(phi) { return JXG.Math.pow( JXG.Math.pow(Math.abs(Math.cos(m.Value() * phi * 0.25 / a.Value())), n2.Value()) + JXG.Math.pow(Math.abs(Math.sin(m.Value() * phi * 0.25 / b.Value())), n3.Value()), -1 / n1.Value()); }, [0, 0], 0, function() { return len.Value() * Math.PI; }], { curveType: 'polar', strokewidth: 1, fillColor: '#765412', fillOpacity: 0.3 }); board.unsuspendUpdate();
<jsxgraph width="100%" aspect-ratio="1 / 1" title="Superformula" description="This construction was copied from JSXGraph examples database: BTW HERE SHOULD BE A GENERATED LINKuseGlobalJS="false"> /* This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-sa/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ var board = JXG.JSXGraph.initBoard(BOARDID, { axis: true, boundingbox: [-10, 10, 12, -10], keepaspectratio: true }); board.suspendUpdate(); var a = board.create('slider', [[-7, 8], [7, 8], [0, 1, 4]], { name: 'a' }); var b = board.create('slider', [[-7, 7], [7, 7], [0, 1, 4]], { name: 'b' }); var m = board.create('slider', [[-7, 6], [7, 6], [0, 4, 40]], { name: 'm' }); var n1 = board.create('slider', [[-7, 5], [7, 5], [0, 4, 20]], { name: 'n_1' }); var n2 = board.create('slider', [[-7, 4], [7, 4], [0, 4, 20]], { name: 'n_2' }); var n3 = board.create('slider', [[-7, 3], [7, 3], [0, 4, 20]], { name: 'n_3' }); var len = board.create('slider', [[1, 2], [7, 2], [0, 2, 20]], { name: 'len' }); var c = board.create('curve', [ function(phi) { return JXG.Math.pow( JXG.Math.pow(Math.abs(Math.cos(m.Value() * phi * 0.25 / a.Value())), n2.Value()) + JXG.Math.pow(Math.abs(Math.sin(m.Value() * phi * 0.25 / b.Value())), n3.Value()), -1 / n1.Value()); }, [0, 0], 0, function() { return len.Value() * Math.PI; }], { curveType: 'polar', strokewidth: 1, fillColor: '#765412', fillOpacity: 0.3 }); board.unsuspendUpdate(); </jsxgraph>
// Define the id of your board in BOARDID var board = JXG.JSXGraph.initBoard(BOARDID, { axis: true, boundingbox: [-10, 10, 12, -10], keepaspectratio: true }); board.suspendUpdate(); var a = board.create('slider', [[-7, 8], [7, 8], [0, 1, 4]], { name: 'a' }); var b = board.create('slider', [[-7, 7], [7, 7], [0, 1, 4]], { name: 'b' }); var m = board.create('slider', [[-7, 6], [7, 6], [0, 4, 40]], { name: 'm' }); var n1 = board.create('slider', [[-7, 5], [7, 5], [0, 4, 20]], { name: 'n_1' }); var n2 = board.create('slider', [[-7, 4], [7, 4], [0, 4, 20]], { name: 'n_2' }); var n3 = board.create('slider', [[-7, 3], [7, 3], [0, 4, 20]], { name: 'n_3' }); var len = board.create('slider', [[1, 2], [7, 2], [0, 2, 20]], { name: 'len' }); var c = board.create('curve', [ function(phi) { return JXG.Math.pow( JXG.Math.pow(Math.abs(Math.cos(m.Value() * phi * 0.25 / a.Value())), n2.Value()) + JXG.Math.pow(Math.abs(Math.sin(m.Value() * phi * 0.25 / b.Value())), n3.Value()), -1 / n1.Value()); }, [0, 0], 0, function() { return len.Value() * Math.PI; }], { curveType: 'polar', strokewidth: 1, fillColor: '#765412', fillOpacity: 0.3 }); board.unsuspendUpdate();
This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License. Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.