Home
Random example
Search
Applications
Chemistry
Economy
Famous theorems
Geography
Physics
Sports
Test
Assessment
Calculus
3D
Applied calculus
Basic calculus
Differential equations
Function plotting
Implicit plotting
Sequences and series
Charts and data
Charts
Statistics
Curves
Interpolation
Intersection, Union, Difference
Lindenmayer Systems
Splines
Geometry
3D
Analytic
Euclidean
Basic constructions
Mappings
Non-Euclidean
Projective
Symmetry
Technical
Accessibility
Animation
Roulettes
Board options
First steps
Images
JSXGraph objects
Arcs and angles
Axes
Circles
Glider
Groups
Lines and arrows
Point
Polygons
Slider
Turtle
Vectors
JessieCode
Texts
Transformations
Video
jsxgraph.org
JSXGraph logo
JSXGraph
JSXGraph share

Share

Snell's law
Show plain example
QR code
<iframe 
    src="http://jsxgraph.uni-bayreuth.de/share/iframe/snells-law" 
    style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" 
    name="JSXGraph example: Snell's law" 
    allowfullscreen
></iframe>
This code has to
<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; ">
   <div id="board-0" class="jxgbox" style="aspect-ratio: 1 / 1; width: 100%;" data-ar="1 / 1"></div>
</div>

<script type = "text/javascript"> 
    /*
    This example is licensed under a 
    Creative Commons Attribution ShareAlike 4.0 International License.
    https://creativecommons.org/licenses/by-sa/4.0/
    
    Please note you have to mention 
    The Center of Mobile Learning with Digital Technology
    in the credits.
    */
    
    const BOARDID = 'board-0';

    var board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 5, 5, -5], axis: false, keepaspectratio: true });
    
    // Line l1 as an interface between two environments, green, with the index of refraction 
    // n_1, and the blue, with the index of refraction n_2.
    
    var M = board.create('point', [-4, 0], { name: 'M', visible: false, fixed: true });
    var I = board.create('point', [0, 0], { name: 'I', size: 1, fixed: true });
    var l1 = board.create('line', [M, I]);
    var ineq1 = board.create('inequality', [l1], { fillColor: 'green' });
    var ineq2 = board.create('inequality', [l1], { inverse: true, fillColor: 'blue' });
    
    // Normal line n with auxiliary points N and O that allows us to determine 
    // the angles of incidence (α) and refraction (β), respectively
    var n = board.create('perpendicular', [l1, I], { name: 'n', color: 'black', dash: "2", strokeWidth: 1 });
    var N = board.create('glider', [0, 4, n], { name: 'N', visible: false });
    var O = board.create('glider', [0, -4, n], { name: 'O', visible: false });
    // a light source L
    var L = board.create('point', [-3, 4], { name: 'L', color: 'red', size: 3 });
    
    // Position of the light source L is limited to the green environment
    var xL, yL;
    L.on('drag', function() {
        if (L.Y() < 0) {
            L.moveTo([xL, yL], 0);
        }
        xL = L.X();
        yL = L.Y();
    });
    
    // r1, the incident light ray
    var r1 = board.create('segment', [L, I], { strokeColor: 'orange', strokeWidth: 4 });
    
    // Sliders to control indexes of refraction
    var n_1 = board.create('slider', [[-4, -3], [-2, -3], [1, 1, 3]], { name: 'n_1', snapWidth: 0.01 });
    var n_2 = board.create('slider', [[-4, -4], [-2, -4], [1, 1, 3]], { name: 'n_2', snapWidth: 0.01 });
    
    // The value of s controls the kind of refraction/reflection, if s > 1 the total reflection occurs
    // (numerically it is the absolute value of the sine of the angle of refraction)
    var s = () => (n_1.Value() / n_2.Value()) * Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))).toFixed(6);
    
    // Two possible points through which the modified ray passes, B for the reflected ray and C for the refracted one
    var B = board.create('point', [
                   () => -L.X(),
                   () => L.Y()
                ], {
        visible: () => (s() > 1 || Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) == 1) ? true : false,
        name: 'R_1',
        face: 'o',
        size: 1
    });
    var C = board.create('point', [
                   () => 5 * (n_1.Value() / n_2.Value()) * Math.sin(JXG.Math.Geometry.angle(N, I, L)),
                   () => -5 * Math.cos(Math.asin((n_1.Value() / n_2.Value()) * Math.sin(JXG.Math.Geometry.angle(N, I, L))))
                ], {
        visible: () => (s() <= 1 && Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) != 1) ? true : false,
        name: 'R_2',
        face: 'o',
        size: 1
    });
    
    // Reflected (r2) and refracted (r3) ray
    var r2 = board.create('segment', [I, B], {
        visible: () => (s() > 1 || Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) == 1) ? true : false,
        strokeColor: 'orange',
        strokeWidth: 4,
        lastArrow: { type: 1, size: 3 }
    });
    var r3 = board.create('segment', [I, C], {
        visible: () => (s() <= 1 && Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) != 1) ? true : false,
        strokeColor: 'orange',
        strokeWidth: 4,
        lastArrow: { type: 1, size: 3 }
    });
    
    // Angles of impact (angle 1), refraction (angle2) and reflection (angle3), respectively
    var angle1 = board.create('nonreflexangle', [N, I, L], { radius: 1, color: 'orange', fillOpacity: 0, name: 'α' });
    var angle2 = board.create('nonreflexangle', [O, I, C], {
        visible: () => (s() <= 1 && Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) != 1) ? true : false,
        radius: 1,
        color: 'orange',
        fillOpacity: 0,
        name: 'β'
    });
    var angle3 = board.create('nonreflexangle', [B, I, N], {
        visible: () => (s() > 1 || Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) == 1) ? true : false,
        radius: 1,
        color: 'orange',
        fillOpacity: 0,
        name: 'β'
    });
 </script> 
/*
This example is licensed under a 
Creative Commons Attribution ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/

Please note you have to mention 
The Center of Mobile Learning with Digital Technology
in the credits.
*/

const BOARDID = 'your_div_id'; // Insert your id here!

var board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 5, 5, -5], axis: false, keepaspectratio: true });

// Line l1 as an interface between two environments, green, with the index of refraction 
// n_1, and the blue, with the index of refraction n_2.

var M = board.create('point', [-4, 0], { name: 'M', visible: false, fixed: true });
var I = board.create('point', [0, 0], { name: 'I', size: 1, fixed: true });
var l1 = board.create('line', [M, I]);
var ineq1 = board.create('inequality', [l1], { fillColor: 'green' });
var ineq2 = board.create('inequality', [l1], { inverse: true, fillColor: 'blue' });

// Normal line n with auxiliary points N and O that allows us to determine 
// the angles of incidence (α) and refraction (β), respectively
var n = board.create('perpendicular', [l1, I], { name: 'n', color: 'black', dash: "2", strokeWidth: 1 });
var N = board.create('glider', [0, 4, n], { name: 'N', visible: false });
var O = board.create('glider', [0, -4, n], { name: 'O', visible: false });
// a light source L
var L = board.create('point', [-3, 4], { name: 'L', color: 'red', size: 3 });

// Position of the light source L is limited to the green environment
var xL, yL;
L.on('drag', function() {
    if (L.Y() < 0) {
        L.moveTo([xL, yL], 0);
    }
    xL = L.X();
    yL = L.Y();
});

// r1, the incident light ray
var r1 = board.create('segment', [L, I], { strokeColor: 'orange', strokeWidth: 4 });

// Sliders to control indexes of refraction
var n_1 = board.create('slider', [[-4, -3], [-2, -3], [1, 1, 3]], { name: 'n_1', snapWidth: 0.01 });
var n_2 = board.create('slider', [[-4, -4], [-2, -4], [1, 1, 3]], { name: 'n_2', snapWidth: 0.01 });

// The value of s controls the kind of refraction/reflection, if s > 1 the total reflection occurs
// (numerically it is the absolute value of the sine of the angle of refraction)
var s = () => (n_1.Value() / n_2.Value()) * Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))).toFixed(6);

// Two possible points through which the modified ray passes, B for the reflected ray and C for the refracted one
var B = board.create('point', [
               () => -L.X(),
               () => L.Y()
            ], {
    visible: () => (s() > 1 || Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) == 1) ? true : false,
    name: 'R_1',
    face: 'o',
    size: 1
});
var C = board.create('point', [
               () => 5 * (n_1.Value() / n_2.Value()) * Math.sin(JXG.Math.Geometry.angle(N, I, L)),
               () => -5 * Math.cos(Math.asin((n_1.Value() / n_2.Value()) * Math.sin(JXG.Math.Geometry.angle(N, I, L))))
            ], {
    visible: () => (s() <= 1 && Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) != 1) ? true : false,
    name: 'R_2',
    face: 'o',
    size: 1
});

// Reflected (r2) and refracted (r3) ray
var r2 = board.create('segment', [I, B], {
    visible: () => (s() > 1 || Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) == 1) ? true : false,
    strokeColor: 'orange',
    strokeWidth: 4,
    lastArrow: { type: 1, size: 3 }
});
var r3 = board.create('segment', [I, C], {
    visible: () => (s() <= 1 && Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) != 1) ? true : false,
    strokeColor: 'orange',
    strokeWidth: 4,
    lastArrow: { type: 1, size: 3 }
});

// Angles of impact (angle 1), refraction (angle2) and reflection (angle3), respectively
var angle1 = board.create('nonreflexangle', [N, I, L], { radius: 1, color: 'orange', fillOpacity: 0, name: 'α' });
var angle2 = board.create('nonreflexangle', [O, I, C], {
    visible: () => (s() <= 1 && Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) != 1) ? true : false,
    radius: 1,
    color: 'orange',
    fillOpacity: 0,
    name: 'β'
});
var angle3 = board.create('nonreflexangle', [B, I, N], {
    visible: () => (s() > 1 || Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) == 1) ? true : false,
    radius: 1,
    color: 'orange',
    fillOpacity: 0,
    name: 'β'
});
<jsxgraph width="100%" aspect-ratio="1 / 1" title="Snell's law" description="This construction was copied from JSXGraph examples database: BTW HERE SHOULD BE A GENERATED LINKuseGlobalJS="false">
   /*
   This example is licensed under a 
   Creative Commons Attribution ShareAlike 4.0 International License.
   https://creativecommons.org/licenses/by-sa/4.0/
   
   Please note you have to mention 
   The Center of Mobile Learning with Digital Technology
   in the credits.
   */
   
   var board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 5, 5, -5], axis: false, keepaspectratio: true });
   
   // Line l1 as an interface between two environments, green, with the index of refraction 
   // n_1, and the blue, with the index of refraction n_2.
   
   var M = board.create('point', [-4, 0], { name: 'M', visible: false, fixed: true });
   var I = board.create('point', [0, 0], { name: 'I', size: 1, fixed: true });
   var l1 = board.create('line', [M, I]);
   var ineq1 = board.create('inequality', [l1], { fillColor: 'green' });
   var ineq2 = board.create('inequality', [l1], { inverse: true, fillColor: 'blue' });
   
   // Normal line n with auxiliary points N and O that allows us to determine 
   // the angles of incidence (α) and refraction (β), respectively
   var n = board.create('perpendicular', [l1, I], { name: 'n', color: 'black', dash: "2", strokeWidth: 1 });
   var N = board.create('glider', [0, 4, n], { name: 'N', visible: false });
   var O = board.create('glider', [0, -4, n], { name: 'O', visible: false });
   // a light source L
   var L = board.create('point', [-3, 4], { name: 'L', color: 'red', size: 3 });
   
   // Position of the light source L is limited to the green environment
   var xL, yL;
   L.on('drag', function() {
       if (L.Y() < 0) {
           L.moveTo([xL, yL], 0);
       }
       xL = L.X();
       yL = L.Y();
   });
   
   // r1, the incident light ray
   var r1 = board.create('segment', [L, I], { strokeColor: 'orange', strokeWidth: 4 });
   
   // Sliders to control indexes of refraction
   var n_1 = board.create('slider', [[-4, -3], [-2, -3], [1, 1, 3]], { name: 'n_1', snapWidth: 0.01 });
   var n_2 = board.create('slider', [[-4, -4], [-2, -4], [1, 1, 3]], { name: 'n_2', snapWidth: 0.01 });
   
   // The value of s controls the kind of refraction/reflection, if s > 1 the total reflection occurs
   // (numerically it is the absolute value of the sine of the angle of refraction)
   var s = () => (n_1.Value() / n_2.Value()) * Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))).toFixed(6);
   
   // Two possible points through which the modified ray passes, B for the reflected ray and C for the refracted one
   var B = board.create('point', [
                  () => -L.X(),
                  () => L.Y()
               ], {
       visible: () => (s() > 1 || Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) == 1) ? true : false,
       name: 'R_1',
       face: 'o',
       size: 1
   });
   var C = board.create('point', [
                  () => 5 * (n_1.Value() / n_2.Value()) * Math.sin(JXG.Math.Geometry.angle(N, I, L)),
                  () => -5 * Math.cos(Math.asin((n_1.Value() / n_2.Value()) * Math.sin(JXG.Math.Geometry.angle(N, I, L))))
               ], {
       visible: () => (s() <= 1 && Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) != 1) ? true : false,
       name: 'R_2',
       face: 'o',
       size: 1
   });
   
   // Reflected (r2) and refracted (r3) ray
   var r2 = board.create('segment', [I, B], {
       visible: () => (s() > 1 || Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) == 1) ? true : false,
       strokeColor: 'orange',
       strokeWidth: 4,
       lastArrow: { type: 1, size: 3 }
   });
   var r3 = board.create('segment', [I, C], {
       visible: () => (s() <= 1 && Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) != 1) ? true : false,
       strokeColor: 'orange',
       strokeWidth: 4,
       lastArrow: { type: 1, size: 3 }
   });
   
   // Angles of impact (angle 1), refraction (angle2) and reflection (angle3), respectively
   var angle1 = board.create('nonreflexangle', [N, I, L], { radius: 1, color: 'orange', fillOpacity: 0, name: 'α' });
   var angle2 = board.create('nonreflexangle', [O, I, C], {
       visible: () => (s() <= 1 && Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) != 1) ? true : false,
       radius: 1,
       color: 'orange',
       fillOpacity: 0,
       name: 'β'
   });
   var angle3 = board.create('nonreflexangle', [B, I, N], {
       visible: () => (s() > 1 || Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) == 1) ? true : false,
       radius: 1,
       color: 'orange',
       fillOpacity: 0,
       name: 'β'
   });
</jsxgraph>

Snell's law

Geometry
Refraction of a light ray emanating from the source L at the interface between two environments of different refractive indices, $n1$, $n2$.
Web references
  • Snell's law - Wikipedia
// Define the id of your board in BOARDID

var board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 5, 5, -5], axis: false, keepaspectratio: true });

// Line l1 as an interface between two environments, green, with the index of refraction 
// n_1, and the blue, with the index of refraction n_2.

var M = board.create('point', [-4, 0], { name: 'M', visible: false, fixed: true });
var I = board.create('point', [0, 0], { name: 'I', size: 1, fixed: true });
var l1 = board.create('line', [M, I]);
var ineq1 = board.create('inequality', [l1], { fillColor: 'green' });
var ineq2 = board.create('inequality', [l1], { inverse: true, fillColor: 'blue' });

// Normal line n with auxiliary points N and O that allows us to determine 
// the angles of incidence (α) and refraction (β), respectively
var n = board.create('perpendicular', [l1, I], { name: 'n', color: 'black', dash: "2", strokeWidth: 1 });
var N = board.create('glider', [0, 4, n], { name: 'N', visible: false });
var O = board.create('glider', [0, -4, n], { name: 'O', visible: false });
// a light source L
var L = board.create('point', [-3, 4], { name: 'L', color: 'red', size: 3 });

// Position of the light source L is limited to the green environment
var xL, yL;
L.on('drag', function() {
    if (L.Y() < 0) {
        L.moveTo([xL, yL], 0);
    }
    xL = L.X();
    yL = L.Y();
});

// r1, the incident light ray
var r1 = board.create('segment', [L, I], { strokeColor: 'orange', strokeWidth: 4 });

// Sliders to control indexes of refraction
var n_1 = board.create('slider', [[-4, -3], [-2, -3], [1, 1, 3]], { name: 'n_1', snapWidth: 0.01 });
var n_2 = board.create('slider', [[-4, -4], [-2, -4], [1, 1, 3]], { name: 'n_2', snapWidth: 0.01 });

// The value of s controls the kind of refraction/reflection, if s > 1 the total reflection occurs
// (numerically it is the absolute value of the sine of the angle of refraction)
var s = () => (n_1.Value() / n_2.Value()) * Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))).toFixed(6);

// Two possible points through which the modified ray passes, B for the reflected ray and C for the refracted one
var B = board.create('point', [
               () => -L.X(),
               () => L.Y()
            ], {
    visible: () => (s() > 1 || Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) == 1) ? true : false,
    name: 'R_1',
    face: 'o',
    size: 1
});
var C = board.create('point', [
               () => 5 * (n_1.Value() / n_2.Value()) * Math.sin(JXG.Math.Geometry.angle(N, I, L)),
               () => -5 * Math.cos(Math.asin((n_1.Value() / n_2.Value()) * Math.sin(JXG.Math.Geometry.angle(N, I, L))))
            ], {
    visible: () => (s() <= 1 && Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) != 1) ? true : false,
    name: 'R_2',
    face: 'o',
    size: 1
});

// Reflected (r2) and refracted (r3) ray
var r2 = board.create('segment', [I, B], {
    visible: () => (s() > 1 || Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) == 1) ? true : false,
    strokeColor: 'orange',
    strokeWidth: 4,
    lastArrow: { type: 1, size: 3 }
});
var r3 = board.create('segment', [I, C], {
    visible: () => (s() <= 1 && Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) != 1) ? true : false,
    strokeColor: 'orange',
    strokeWidth: 4,
    lastArrow: { type: 1, size: 3 }
});

// Angles of impact (angle 1), refraction (angle2) and reflection (angle3), respectively
var angle1 = board.create('nonreflexangle', [N, I, L], { radius: 1, color: 'orange', fillOpacity: 0, name: 'α' });
var angle2 = board.create('nonreflexangle', [O, I, C], {
    visible: () => (s() <= 1 && Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) != 1) ? true : false,
    radius: 1,
    color: 'orange',
    fillOpacity: 0,
    name: 'β'
});
var angle3 = board.create('nonreflexangle', [B, I, N], {
    visible: () => (s() > 1 || Math.abs(Math.sin(JXG.Math.Geometry.angle(N, I, L))) == 1) ? true : false,
    radius: 1,
    color: 'orange',
    fillOpacity: 0,
    name: 'β'
});

license

This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License.
Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.