Home
Random example
Search
Applications
Chemistry
Economy
Famous theorems
Geography
Physics
Sports
Test
Assessment
Calculus
3D
Applied calculus
Basic calculus
Differential equations
Function plotting
Implicit plotting
Sequences and series
Charts and data
Charts
Statistics
Curves
Interpolation
Intersection, Union, Difference
Lindenmayer Systems
Splines
Geometry
3D
Analytic
Euclidean
Basic constructions
Mappings
Non-Euclidean
Projective
Symmetry
Technical
Animation
Roulettes
Board options
First steps
Images
JSXGraph objects
Arcs and angles
Axes
Circles
Groups
Lines and arrows
Point
Polygons
Slider
Turtle
Vectors
JessieCode
Texts
Transformations
Video
jsxgraph.org
JSXGraph logo
JSXGraph
JSXGraph share

Share

Hyperbola: principal axis transformation
Show plain example
QR code
<iframe 
    src="http://jsxgraph.uni-bayreuth.de/share/iframe/hyperbola-principal-axis-transformation" 
    style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" 
    name="JSXGraph example: Hyperbola: principal axis transformation" 
    allowfullscreen
></iframe>
This code has to
<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; ">
   <div id="board-0" class="jxgbox" style="aspect-ratio: 1 / 1; width: 100%;" data-ar="1 / 1"></div>
</div>

<script type = "text/javascript"> 
    /*
    This example is licensed under a 
    Creative Commons Attribution 4.0 International License.
    https://creativecommons.org/licenses/by/4.0/
    
    Please note you have to mention 
    The Center of Mobile Learning with Digital Technology
    in the credits.
    */
    
    const BOARDID = 'board-0';

    JXG.Options.label.autoPosition = true;
    JXG.Options.text.fontSize = 16;
    JXG.Options.line.strokeWidth = 0.8;
    JXG.Options.point.size = 1;
    
    const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 5, 5, -5], axis: true, showClearTraces: true});
    
    const sq5 = Math.sqrt(5);
    
    // Start with the Euclidean normal form of the quadric,
    // because we easily can read off the focal points.
    var f1 = board.create('point', [0, -sq5], {name:"f'", fixed: true});
    var f2 = board.create('point', [0, sq5], {name:"f", fixed: true});
    var p  = board.create('point', [2, Math.sqrt(2)], {name:"p", fixed: true});
    
    var o = board.create('point', [0, 0], {withLabel:false, color: 'blue', fixed: true, trace:true});
    var e1 = board.create('point', [1, 0], {withLabel:false, color: 'blue', fixed: true});
    var e2 = board.create('point', [0, 1], {withLabel:false, color: 'blue', fixed: true});
    
    // Undo the principal axis transformation to recompute the original form of the quadric
    var phi0 = board.create('transform', [-Math.PI * 0.25], {type: 'rotate'});
    var t0 = board.create('transform', [-2, 1], {type: 'translate'});
    t0.bindTo([f1, f2, p, o, e1, e2]);
    phi0.bindTo([f1, f2, p, o, e1, e2]);
    
    var hyp = board.create('hyperbola', [f1, f2, p]);
    
    // Create transformed axes
    var ax_z1 = board.create('line', [o, e1], {lastArrow: true, strokeColor:'black'});
    var ax_z2 = board.create('line', [o, e2], {lastArrow: true, strokeColor:'black'});
    board.update();
    
    // Visualization of the principal axis transformation
    var alpha = board.create('slider', [[1,4], [3,4], [0, 0, 45]], {name:'α', unitLabel:'°'});
    var f = board.create('slider', [[1,3.5], [3,3.5], [0, 0, 1]], {name:'f'});
    
    var phi = board.create('transform', [function(){ return alpha.Value() * Math.PI / 180; }], {type: 'rotate'});
    var t = board.create('transform', [function(){ return 2*f.Value(); }, function(){ return -f.Value(); }], {type: 'translate'});
    
    phi.bindTo([f1, f2, p, e1, e2, o]);
    t.bindTo([f1, f2, p, e1, e2, o]);
    
 </script> 
/*
This example is licensed under a 
Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0/

Please note you have to mention 
The Center of Mobile Learning with Digital Technology
in the credits.
*/

const BOARDID = 'your_div_id'; // Insert your id here!

JXG.Options.label.autoPosition = true;
JXG.Options.text.fontSize = 16;
JXG.Options.line.strokeWidth = 0.8;
JXG.Options.point.size = 1;

const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 5, 5, -5], axis: true, showClearTraces: true});

const sq5 = Math.sqrt(5);

// Start with the Euclidean normal form of the quadric,
// because we easily can read off the focal points.
var f1 = board.create('point', [0, -sq5], {name:"f'", fixed: true});
var f2 = board.create('point', [0, sq5], {name:"f", fixed: true});
var p  = board.create('point', [2, Math.sqrt(2)], {name:"p", fixed: true});

var o = board.create('point', [0, 0], {withLabel:false, color: 'blue', fixed: true, trace:true});
var e1 = board.create('point', [1, 0], {withLabel:false, color: 'blue', fixed: true});
var e2 = board.create('point', [0, 1], {withLabel:false, color: 'blue', fixed: true});

// Undo the principal axis transformation to recompute the original form of the quadric
var phi0 = board.create('transform', [-Math.PI * 0.25], {type: 'rotate'});
var t0 = board.create('transform', [-2, 1], {type: 'translate'});
t0.bindTo([f1, f2, p, o, e1, e2]);
phi0.bindTo([f1, f2, p, o, e1, e2]);

var hyp = board.create('hyperbola', [f1, f2, p]);

// Create transformed axes
var ax_z1 = board.create('line', [o, e1], {lastArrow: true, strokeColor:'black'});
var ax_z2 = board.create('line', [o, e2], {lastArrow: true, strokeColor:'black'});
board.update();

// Visualization of the principal axis transformation
var alpha = board.create('slider', [[1,4], [3,4], [0, 0, 45]], {name:'α', unitLabel:'°'});
var f = board.create('slider', [[1,3.5], [3,3.5], [0, 0, 1]], {name:'f'});

var phi = board.create('transform', [function(){ return alpha.Value() * Math.PI / 180; }], {type: 'rotate'});
var t = board.create('transform', [function(){ return 2*f.Value(); }, function(){ return -f.Value(); }], {type: 'translate'});

phi.bindTo([f1, f2, p, e1, e2, o]);
t.bindTo([f1, f2, p, e1, e2, o]);
<jsxgraph width="100%" aspect-ratio="1 / 1" title="Hyperbola: principal axis transformation" description="This construction was copied from JSXGraph examples database: BTW HERE SHOULD BE A GENERATED LINKuseGlobalJS="false">
   /*
   This example is licensed under a 
   Creative Commons Attribution 4.0 International License.
   https://creativecommons.org/licenses/by/4.0/
   
   Please note you have to mention 
   The Center of Mobile Learning with Digital Technology
   in the credits.
   */
   
   JXG.Options.label.autoPosition = true;
   JXG.Options.text.fontSize = 16;
   JXG.Options.line.strokeWidth = 0.8;
   JXG.Options.point.size = 1;
   
   const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 5, 5, -5], axis: true, showClearTraces: true});
   
   const sq5 = Math.sqrt(5);
   
   // Start with the Euclidean normal form of the quadric,
   // because we easily can read off the focal points.
   var f1 = board.create('point', [0, -sq5], {name:"f'", fixed: true});
   var f2 = board.create('point', [0, sq5], {name:"f", fixed: true});
   var p  = board.create('point', [2, Math.sqrt(2)], {name:"p", fixed: true});
   
   var o = board.create('point', [0, 0], {withLabel:false, color: 'blue', fixed: true, trace:true});
   var e1 = board.create('point', [1, 0], {withLabel:false, color: 'blue', fixed: true});
   var e2 = board.create('point', [0, 1], {withLabel:false, color: 'blue', fixed: true});
   
   // Undo the principal axis transformation to recompute the original form of the quadric
   var phi0 = board.create('transform', [-Math.PI * 0.25], {type: 'rotate'});
   var t0 = board.create('transform', [-2, 1], {type: 'translate'});
   t0.bindTo([f1, f2, p, o, e1, e2]);
   phi0.bindTo([f1, f2, p, o, e1, e2]);
   
   var hyp = board.create('hyperbola', [f1, f2, p]);
   
   // Create transformed axes
   var ax_z1 = board.create('line', [o, e1], {lastArrow: true, strokeColor:'black'});
   var ax_z2 = board.create('line', [o, e2], {lastArrow: true, strokeColor:'black'});
   board.update();
   
   // Visualization of the principal axis transformation
   var alpha = board.create('slider', [[1,4], [3,4], [0, 0, 45]], {name:'α', unitLabel:'°'});
   var f = board.create('slider', [[1,3.5], [3,3.5], [0, 0, 1]], {name:'f'});
   
   var phi = board.create('transform', [function(){ return alpha.Value() * Math.PI / 180; }], {type: 'rotate'});
   var t = board.create('transform', [function(){ return 2*f.Value(); }, function(){ return -f.Value(); }], {type: 'translate'});
   
   phi.bindTo([f1, f2, p, e1, e2, o]);
   t.bindTo([f1, f2, p, e1, e2, o]);
   
</jsxgraph>

Hyperbola: principal axis transformation

Analytic
Geometry
Example and visualization for principal axis transformation. 1. step: rotate the quadric (i.e. move the slider to $45^\circ$) to canonical form 2. step: translate the quadric to move the center of the quadric to the origin, i.e. move slider $f$
// Define the id of your board in BOARDID

JXG.Options.label.autoPosition = true;
JXG.Options.text.fontSize = 16;
JXG.Options.line.strokeWidth = 0.8;
JXG.Options.point.size = 1;

const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-5, 5, 5, -5], axis: true, showClearTraces: true});

const sq5 = Math.sqrt(5);

// Start with the Euclidean normal form of the quadric,
// because we easily can read off the focal points.
var f1 = board.create('point', [0, -sq5], {name:"f'", fixed: true});
var f2 = board.create('point', [0, sq5], {name:"f", fixed: true});
var p  = board.create('point', [2, Math.sqrt(2)], {name:"p", fixed: true});

var o = board.create('point', [0, 0], {withLabel:false, color: 'blue', fixed: true, trace:true});
var e1 = board.create('point', [1, 0], {withLabel:false, color: 'blue', fixed: true});
var e2 = board.create('point', [0, 1], {withLabel:false, color: 'blue', fixed: true});

// Undo the principal axis transformation to recompute the original form of the quadric
var phi0 = board.create('transform', [-Math.PI * 0.25], {type: 'rotate'});
var t0 = board.create('transform', [-2, 1], {type: 'translate'});
t0.bindTo([f1, f2, p, o, e1, e2]);
phi0.bindTo([f1, f2, p, o, e1, e2]);

var hyp = board.create('hyperbola', [f1, f2, p]);

// Create transformed axes
var ax_z1 = board.create('line', [o, e1], {lastArrow: true, strokeColor:'black'});
var ax_z2 = board.create('line', [o, e2], {lastArrow: true, strokeColor:'black'});
board.update();

// Visualization of the principal axis transformation
var alpha = board.create('slider', [[1,4], [3,4], [0, 0, 45]], {name:'α', unitLabel:'°'});
var f = board.create('slider', [[1,3.5], [3,3.5], [0, 0, 1]], {name:'f'});

var phi = board.create('transform', [function(){ return alpha.Value() * Math.PI / 180; }], {type: 'rotate'});
var t = board.create('transform', [function(){ return 2*f.Value(); }, function(){ return -f.Value(); }], {type: 'translate'});

phi.bindTo([f1, f2, p, e1, e2, o]);
t.bindTo([f1, f2, p, e1, e2, o]);

license

This example is licensed under a Creative Commons Attribution 4.0 International License.
Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.