<iframe src="http://jsxgraph.uni-bayreuth.de/share/iframe/3d-function-graph-with-gradient-plane" style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" name="JSXGraph example: 3D function graph with gradient plane" allowfullscreen ></iframe>
<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; "> <div id="board-0" class="jxgbox" style="aspect-ratio: 1 / 1; width: 100%;" data-ar="1 / 1"></div> </div> <script type = "text/javascript"> /* This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-sa/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'board-0'; var board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-8, 8, 8, -8], keepaspectratio: false, axis: false }); var box = [-5, 5]; var view = board.create('view3d', [ [-6, -3], [8, 8], [box, box, box] ], { xPlaneRear: { visible: false }, yPlaneRear: { visible: false }, }); // Slider to manipulate the function F below. var s = board.create('slider', [[-7, -6], [5, -6], [-3, 0.3, 4]], {name: 's'}); // Function F to be plotted var F = (x, y) => s.Value() * x * y + 2; // 3D surface var c = view.create('functiongraph3d', [F, box, box], { strokeWidth: 0.5, stepsU: 70, stepsV: 70 }); // 3D point: point on xy plane var Axy = view.create('point3d', [2, 2, -5], { withLabel: false, size: 5 }); // Project Axy to the surface var A = view.create('point3d', [ () => [Axy.X(), Axy.Y(), F(Axy.X(), Axy.Y())] ], { withLabel: false }); view.create('line3d', [Axy, A], { dash: 1 }); // Hard coded, partial derivatives of F in point A var dFx = () => s.Value() * A.Y(), dFy = () => s.Value() * A.X(), dFx_vec = [1, 0, dFx], dFy_vec = [0, 1, dFy]; // Gradient plane var plane1 = view.create('plane3d', [A, dFx_vec, dFy_vec, [() => -dFx(), dFx], [() => -dFy(), dFy]], { fillOpacity: 0.8, fillColor: 'red' }); var a = view.create('line3d', [A, dFx_vec, [0, dFx]]); var b = view.create('line3d', [A, dFy_vec, [0, dFy]]); </script>
/* This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-sa/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'your_div_id'; // Insert your id here! var board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-8, 8, 8, -8], keepaspectratio: false, axis: false }); var box = [-5, 5]; var view = board.create('view3d', [ [-6, -3], [8, 8], [box, box, box] ], { xPlaneRear: { visible: false }, yPlaneRear: { visible: false }, }); // Slider to manipulate the function F below. var s = board.create('slider', [[-7, -6], [5, -6], [-3, 0.3, 4]], {name: 's'}); // Function F to be plotted var F = (x, y) => s.Value() * x * y + 2; // 3D surface var c = view.create('functiongraph3d', [F, box, box], { strokeWidth: 0.5, stepsU: 70, stepsV: 70 }); // 3D point: point on xy plane var Axy = view.create('point3d', [2, 2, -5], { withLabel: false, size: 5 }); // Project Axy to the surface var A = view.create('point3d', [ () => [Axy.X(), Axy.Y(), F(Axy.X(), Axy.Y())] ], { withLabel: false }); view.create('line3d', [Axy, A], { dash: 1 }); // Hard coded, partial derivatives of F in point A var dFx = () => s.Value() * A.Y(), dFy = () => s.Value() * A.X(), dFx_vec = [1, 0, dFx], dFy_vec = [0, 1, dFy]; // Gradient plane var plane1 = view.create('plane3d', [A, dFx_vec, dFy_vec, [() => -dFx(), dFx], [() => -dFy(), dFy]], { fillOpacity: 0.8, fillColor: 'red' }); var a = view.create('line3d', [A, dFx_vec, [0, dFx]]); var b = view.create('line3d', [A, dFy_vec, [0, dFy]]);
<jsxgraph width="100%" aspect-ratio="1 / 1" title="3D function graph with gradient plane" description="This construction was copied from JSXGraph examples database: BTW HERE SHOULD BE A GENERATED LINKuseGlobalJS="false"> /* This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-sa/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ var board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-8, 8, 8, -8], keepaspectratio: false, axis: false }); var box = [-5, 5]; var view = board.create('view3d', [ [-6, -3], [8, 8], [box, box, box] ], { xPlaneRear: { visible: false }, yPlaneRear: { visible: false }, }); // Slider to manipulate the function F below. var s = board.create('slider', [[-7, -6], [5, -6], [-3, 0.3, 4]], {name: 's'}); // Function F to be plotted var F = (x, y) => s.Value() * x * y + 2; // 3D surface var c = view.create('functiongraph3d', [F, box, box], { strokeWidth: 0.5, stepsU: 70, stepsV: 70 }); // 3D point: point on xy plane var Axy = view.create('point3d', [2, 2, -5], { withLabel: false, size: 5 }); // Project Axy to the surface var A = view.create('point3d', [ () => [Axy.X(), Axy.Y(), F(Axy.X(), Axy.Y())] ], { withLabel: false }); view.create('line3d', [Axy, A], { dash: 1 }); // Hard coded, partial derivatives of F in point A var dFx = () => s.Value() * A.Y(), dFy = () => s.Value() * A.X(), dFx_vec = [1, 0, dFx], dFy_vec = [0, 1, dFy]; // Gradient plane var plane1 = view.create('plane3d', [A, dFx_vec, dFy_vec, [() => -dFx(), dFx], [() => -dFy(), dFy]], { fillOpacity: 0.8, fillColor: 'red' }); var a = view.create('line3d', [A, dFx_vec, [0, dFx]]); var b = view.create('line3d', [A, dFy_vec, [0, dFy]]); </jsxgraph>
// Define the id of your board in BOARDID var board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-8, 8, 8, -8], keepaspectratio: false, axis: false }); var box = [-5, 5]; var view = board.create('view3d', [ [-6, -3], [8, 8], [box, box, box] ], { xPlaneRear: { visible: false }, yPlaneRear: { visible: false }, }); // Slider to manipulate the function F below. var s = board.create('slider', [[-7, -6], [5, -6], [-3, 0.3, 4]], {name: 's'}); // Function F to be plotted var F = (x, y) => s.Value() * x * y + 2; // 3D surface var c = view.create('functiongraph3d', [F, box, box], { strokeWidth: 0.5, stepsU: 70, stepsV: 70 }); // 3D point: point on xy plane var Axy = view.create('point3d', [2, 2, -5], { withLabel: false, size: 5 }); // Project Axy to the surface var A = view.create('point3d', [ () => [Axy.X(), Axy.Y(), F(Axy.X(), Axy.Y())] ], { withLabel: false }); view.create('line3d', [Axy, A], { dash: 1 }); // Hard coded, partial derivatives of F in point A var dFx = () => s.Value() * A.Y(), dFy = () => s.Value() * A.X(), dFx_vec = [1, 0, dFx], dFy_vec = [0, 1, dFy]; // Gradient plane var plane1 = view.create('plane3d', [A, dFx_vec, dFy_vec, [() => -dFx(), dFx], [() => -dFy(), dFy]], { fillOpacity: 0.8, fillColor: 'red' }); var a = view.create('line3d', [A, dFx_vec, [0, dFx]]); var b = view.create('line3d', [A, dFy_vec, [0, dFy]]);
This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License. Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.